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Abstract The very recent use of atomistic simulations to

investigate low-dimensional ferroelectrics and ferromag-

nets has led to the discovery of a new order parameter that

is associated with the formation and evolution of many

complex dipolar structures (such as onion and flower states

or double vortices). Such new order parameter has been

named as the hypertoidal moment, involves a double cross

product of the local dipoles with the vectors locating their

positions, and provides a measure of subtle microscopic

features. Here, the recent studies devoted to the discovery

of such order parameter and how to control it in zero-

dimensional systems are reviewed. We also give additional

information, such as the symmetry, conjugate field and

associated susceptibility of the electric and magnetic hy-

pertoidal moments. A discussion about the existence of the

hypertoidal moment and its evolution as a function of

temperature and applied field, as well as its possible multi-

values, is also provided for complex states (such as nano-

stripes and nanobubbles) in periodic dipolar systems.

Introduction

The need of miniaturizing devices and the quest of finding

original phenomena have led to a flurry of research in the

field of low-dimensional ferroelectric and magnetic sys-

tems in the last 10 years. As a result, interesting and

exciting discoveries of fundamental and technological

importance have been made. In particular, novel complex

dipolar states have been found to occur and to possess new

order parameters (in addition to, or even in replacement of,

the polarization/magnetization in low-dimensional ferro-

electrics/ferromagnets). For instance, the toroidal moment,

which involves the cross product of the local dipoles with

their positions [1], is the sole order parameter associated

with the (single) vortex states that have been discovered in

zero-dimensional ferroelectrics [2] and ferromagnets [3] 5

and 8 years ago, respectively. Another example is the very

recent prediction [4], through the use of atomistic simula-

tions, of another multipole that acts as an order parameter

of various, complex dipolar states in zero-dimensional

ferroelectrics and ferromagnets. Such new multipole has

been named as the hypertoroidal moment in Ref. [4],

involves a double cross product of the local dipoles with

the vectors locating their positions. It provides a measure

of some subtle microscopic features, such as the helicity of

the two domains inherent to onion states, the curvature of

the dipolar pattern in flower states or characteristics of set

of vortices with opposite chirality (e.g., distance between

vortices’ centers and/or magnitude of their local dipoles).

Interestingly, Ref. [5] further indicated that one can control

such new order parameter—through the application of

some fields in some peculiar zero-dimensional systems

(e.g., hysterons or elongated nanodots). Such possible

control may be put in use to design a new generation of,

e.g., efficient memory nanodevices.

The aim of this manuscript is to review the studies of

Refs. [4, 5], as well as, to provide additional information

related to the electric and magnetic hypertoroidal moments.

This article is organized as follows: section Hypertoroidal

moment: definition, symmetry, conjugate fields, and cor-

responding susceptibility provides the definition of these
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hypertoroidal moments, and indicates its symmetries,

conjugate fields, and associated susceptibilities. Section

Hypertoroidal moment in zero-dimensional dipolar systems

mostly reviews the two studies reporting the discovery of

the existence and control of these hypertoroidal moments

in zero-dimensional ferromagnets and ferroelectrics [4, 5],

and gives information about the numerical methods used

there. Section Hypertoroidal moment in two-dimensional

dipolar systems is devoted to hypertoroidal moments in

periodic (e.g., 2D) systems. In particular, section Hyper-

toroidal moment in two-dimensional dipolar systems

reveals that such hypertoroidal moments can be used as a

fingerprint of unusual evolutions of the dipolar configura-

tions and that, unlike in zero-dimensional systems, exhibit

different possible values depending on the choice made for

the supercell mimicking these periodic systems. Finally,

section Conclusion concludes this article.

Hypertoroidal moment: definition, symmetry,

conjugate fields, and corresponding susceptibility

Definition

In order to better appreciate the origin of the hypertoroidal

moment, let us first discuss the definition of the toroidal

moment originally given in Refs. [1, 6]

Ta ¼
1

10V

Z
½ðr � jÞra � 2r2ja�d3r; ð1Þ

where a denotes a Cartesian component, V the volume of

the investigated system, r the position vector (with respect

to the origin), and j ¼ curlp —with p being the (magnetic

or electric) dipole moment. Equation 1 results from a

multipole expansion of j in terms of power of position, and

indicates that the toroidal moment is associated with the

second order in that expansion. Interestingly, one can prove

through the help of integral theorems that Eq. 1 can be

rewritten as [1]:

T ¼ 1

V

X
i

Ti ¼
1

2V

X
i

ri � pit; ð2Þ

where

Ti ¼
1

2
ri � pit ð3Þ

is the individual toroidal moment associated with the site i

(that is located at ri) and pit is the transverse component of

the (electric or magnetic) dipole moment at this site i.

Let us now define J ¼ curlT (that is, consider, e.g.,

systems for which the toroidal moment can be ‘‘strongly’’

space dependent), and introduce a new physical quantity,

the hypertoroidal moment, by ‘‘simply’’ replacing j by J in

Eq. 1:

ha ¼
1

10V

Z
½ðr � JÞra � 2r2Ja�d3r: ð4Þ

The hypertoroidal moment can also be rewritten by

substituting in Eq. 2 the individual dipole moments by

the individual toroidal moments. In other words, one can

write:

h ¼ 1

2V

X
i

ri � Tit ¼
1

4V

X
i

ri � ri � pitð Þt; ð5Þ

where Tit is the transverse component of the individual

toroidal moment.

Note that we numerically checked (for all the various

cases we considered) that the transverse component of the

individual dipoles and individual toroidal moment can be

well approximated by:

pit � pi � hpi; ð6Þ
Tit � Ti � hTi; ð7Þ

where hpi and hTi are the average over all sites of the

individual dipole and toroidal moments, respectively.

Interestingly, such approximations make T and h inde-

pendent on the choice of the origin for the ri vectors in any

zero-dimensional systems (i.e., for systems that are finite in

any Cartesian direction). Such approximations make also T

and h independent on the choice of the origin for the ri

vectors for a given (periodic) supercell in any one-dimen-

sional, two-dimensional, and three-dimensional systems,

but, as we will see later in subsection Multivaluedness of

the hypertoroidal moment in thin films, T and h do depend

on the choice of the supercell made for mimicking systems

that are periodic in one, two, or three directions.

Symmetry

Note that Eq. 5 allows us to determine the symmetry of the

magnetic hypertoroidal moment, hm (i.e., for which the

involved dipoles are magnetic), and of the electric hyper-

toroidal moment, he (for which the involved dipoles are

electric). Here, we follow the Ascher notations [7], and

indicate in Table 1 how hm and he transform under space

and time inversion (Table 1 also reports the already

known transformation of the magnetization M; electrical

Table 1 Transformation of different order parameters under space

and time inversion

M P Tm Te hm he

r ? -r ? - - ? ? -

t ? -t - ? - ? - ?

M, P, Tm, Te, hm, and he represent the magnetization, polarization,

magnetic toroidal moment, electric toroidal moment, magnetic hyp-

ertoroidal moment and electric hypertoroidal moment, respectively
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polarization P; magnetic toroidal moment Tm; and electric

toroidal moment Te; for the sake of completeness [1, 7]).

One can notice that the magnetic hypertoroidal moment

transforms as the magnetization: they are both axial vectors

(since they are invariant under space inversion) and both

change their sign under time inversion. Similarly, he

transforms as the polarization, and is thus a polar vector

(since it changes its sign under space inversion) in addition

to be invariant under time inversion.

Knowing such symmetries is important to, e.g., deter-

mine which physical quantities can interact with which

order parameters or how a combination of different order

parameters can influence or even induce another order

parameter. For instance, it is interesting to realize that the

cross product between Tm and hm transforms (under space

and time reversal) in the same way than the electrical

polarization. This implies that a material possessing a non-

zero magnetic toroidal moment and a non-zero magnetic

hypertoroidal moment, with Tm and hm being neither

parallel nor antiparallel to other, can be an improper fer-

roelectric (i.e., it can exhibit an electric polarization

induced by the combination of Tm and hm;) in the same

manner than a cycloidal spin structure can generate a

polarization [8] through the Dzyaloshinskii–Moriya model

[9, 10].

Conjugate fields

Let us now determine what are the conjugated fields of hm

and he: For that, it is useful to recall that the fields con-

jugated to Tm and Te have already been derived in the

literature [11] and are r� B and r� E; respectively. In

other words, the field conjugate to a magnetic (respec-

tively, electric) toroidal moment is the curl of the field that

is conjugate to the magnetization (respectively, polariza-

tion). Since the passage from individual dipoles to the

toroidal moment is similar to the passage from individual

toroidal moments to the hypertoroidal moment (they both

involve cross products with vectors locating the sites), one

can deduce that the conjugated field Fm of hm is

Fm ¼ r� ðr � BÞ ð8Þ

and that the conjugated field Fe of he is

Fe ¼ r� ðr � EÞ: ð9Þ

Non-zero values of the conjugate fields of hm and he thus

require the creation of highly inhomogeneus-in-space mag-

netic or electric fields, respectively, such as 1
2
r� ðx� rÞ

where x is a constant vector. Note that we numerically

checked, when investigating double vortices (for which the

sole order parameter is the hypertoroidal moment, see sub-

sections Magnetic hysterons and Ferroelectric nanodots),

that such field (for which curlcurl is simply equal to x at any

point in space) can indeed affect and even control hyperto-

roidal moment.

Hypertoroidal susceptibility

The change of the magnetic or electric hypertoroidal

moment with respect to its conjugate field is a physical

quantity that we can denote as the hypertoroidal suscepti-

bility, based on the analogy with the magnetic (respec-

tively, dielectric) susceptibility that quantifies the response

of the magnetization (respectively, polarization) to a

magnetic (respectively, electric field). In other words, one

can define the magnetic hypertoroidal susceptibility, v(hm),

and the electric hypertoroidal susceptibility, v(he), as:

vðhmÞ
ab ¼ l0

dhm;a

d½r � ðr � BÞ�b
ð10Þ

vðheÞ
ab ¼

1

e0

dhe;a

d½r � ðr � EÞ�b
; ð11Þ

where a and b are Cartesian indices, l0 the vacuum per-

meability, and e0 the vacuum permittivity.

Interestingly, it is straightforward to prove that the

hypertoroidal susceptibilities can be practically determined

by computing correlation functions of the considered sys-

tem under no field. Such useful feature originates from the

fluctuation-dissipation theorem [12], is similar to the fact

that the dielectric susceptibility is well known to be related

to polarization’s fluctuations [13], and yields here:

vðhmÞ
ab ¼ l0V

kBT
hhm;ahm;bi � hhm;aihhm;bi
� �

; ð12Þ

vðheÞ
ab ¼

V

e0kBT
hhe;ahe;bi � hhe;aihhe;bi
� �

; ð13Þ

where V is the volume of the system, kB the Boltzmann

constant, T the temperature, and ‘‘h i’’ denotes thermal

averages.

Hypertoroidal moment in zero-dimensional dipolar

systems

The aim of this section is to mostly review recent articles

that reported the discovery of the hypertoroidal moment,

and how to control it, in different zero-dimensional systems

made of ferromagnets or ferroelectrics [4, 5] (note that we

also report additional information in subsections Ferro-

electric nanodots and Ferroelectric half-cut rings that were

never published before). This discovery occurred through

simulations. As a result, it is important to first (briefly)

discuss the methods used in these simulations.
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Methods

Ferromagnets

For zero-dimensional ferromagnets having characteristic

sizes of the order of several hundred, or even thousand, of

nanometers (such sizes are needed to obtain complex dipolar

configurations [14–16]), the hybrid approach of Ref. [15]

that combines both atomistic and continuum features was

used. In this scheme, the investigated ferromagnet is divided

into equal regions (cells) of b3 volume and containing sev-

eral unit cells. The total magnetic moment of any of such

region j, pj; is equal to the sum of the pi;j local magnetic

moments of the magnetic atoms i belonging to that region,

assuming that the pi;j are all identical inside a given region.

The total energy of the studied zero-dimensional ferro-

magnetic structures under a magnetic field, l0H (with l0

being the permeability of vacuum), is given by:

Emagn ¼
1

2

X
jkab

Dja;kbpjapkb � l0H �
X

j

pj þ
1

2
J
X
jka

pjapka;

ð14Þ

where the sums run over the cells j and k and over the

Cartesian components a and b. Dja,kb is the tensor associ-

ated with the long-range magnetic dipole–dipole interac-

tions [15], and the sum over k in the last term only runs

over the first nearest neighbors of the cells j. The short-

range exchange interaction parameter between the pj’s is

estimated from the usual material exchange constant A as

J ¼ Aa=ðn5jpi;jj2Þ; where a is the material primitive lattice

constant and where n = b/a is an integer. The ferromag-

netic systems investigated in Refs. [4, 5] were mimicked to

be made of Permalloy 80 (i.e., Ni80Fe20) by using the

parameters [16] A = 1.3 9 10-6 erg/cm, jpi;jj ¼ 0:205lB

(where lB is the Bohr magneton) and a ^ 3 Å. Emagn was

then used to solve the Landau-Lifshitz molecular dynamics

equations [17] for all the pj (note that this hybrid method

technically differs from the approaches previously used for

low-dimensional ferromagnets [18–20]).

Ferroelectrics

Prosandeev and Bellaiche [4, 5] considered zero-dimen-

sional stress-free ferroelectrics made of Pb(Zr0.4Ti0.6)O3

(PZT), and having {001} Pb–O terminated surfaces. Their

total energy is given by:

Etot ¼Ematðfpig; fvig; ĝ; frigÞ

þ b
2

X
i

hEdepi � pi þ Esurfðfpig; fvigÞ;
ð15Þ

where pi is the electrical dipole moment at the site i of the

supercell and vi is a dimensionless vector related to the

inhomogeneous strain around this site [21, 22], while ĝ is

the homogeneous strain tensor. {ri} characterizes the alloy

configuration [23, 24] that is presently randomly chosen, in

order to mimic a disordered system. The expression and

first-principles-derived parameters of Emat, the intrinsic

alloy effective Hamiltonian energy, are those given in Refs.

[23, 24] for PZT bulk, except for the dipole–dipole inter-

actions for which the analytical expressions derived in

Refs. [25–27] were used for the investigated zero-dimen-

sional PZT systems under ideal open-circuit conditions

(OC). Such electrical boundary conditions naturally lead to

the existence of a maximum depolarizing field (denoted by

hEdepi and determined from the atomistic approach of Refs.

[26, 27]) inside the system for a non-vanishing polariza-

tion. The second term of Eq. 15 mimics a screening of

hEdepi via the b parameter. More precisely, b = 0 corre-

sponds to ideal OC conditions, while an increase in b
lowers the magnitude of the resulting depolarizing field,

and b = 1 corresponds to ideal short-circuit (SC) condi-

tions for which the depolarizing field has vanished. The

third term of Eq. 15 , Esurf, mimics how the existence

of free surfaces affects the dipoles and strains near them

[28, 29]. Its analytical expression is indicated in Ref. [29],

with its parameters having been determined from a first-

principles computation on a PZT slab surrounded by vac-

uum. The total energy of Eq. 15 was used in Monte Carlo

(MC) simulations [30] or molecular dynamics [31].

Magnetic hypertoroidal moment in zero-dimensional

ferromagnets

Let us now discuss the discovery of the magnetic hyper-

toroidal moment, and related effects, in zero-dimensional

ferromagnets.

Asymmetric ferromagnetic rings

An asymmetric ferromagnetic ring made of Permalloy 80

was investigated in Ref. [4], using the method described in

subsection Methods: Ferromagnets, in order to discover the

existence of the magnetic hypertoroidal moment. Practi-

cally, the studied system has a height h ^ 250 nm, and an

internal and external radii about the z-axis (that lies along

the [001] direction) equal to r ^ 417 nm and

L ^ 1056 nm, respectively. This ring was made asym-

metric in shape by shifting along the x-axis (that lies along

the [100] direction) the center of the internal circle in any

(001) plane from the center of the external circle by

S ^ 167 nm, as schematized in Fig. 1.

Figure 2 displays the resulting hm,y as a function

of l0Hy, at a simulated temperature of ^100 K. l0Hy is

the y-component of the ac magnetic field that was solely

applied along the y-axis, and was allowed to vary in time
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between -10 and ?10 mT with a 0.6-MHz frequency. hm,y

is the y- (and sole) component of the magnetic hyperto-

roidal moment. Figure 2 indicates that hm can be finite and

can be considered as an order parameter to represent the

complex states, and their evolution, occurring in this fer-

romagnetic ring under an homogeneous-in-space magnetic

field. Moreover, the insets of Fig. 2 provide a snapshot of

the dipole arrangement in the four important states pre-

dicted by our simulations. These states are: state (a) which

is an ‘‘onion’’ state that occurs for the largest positive

values of Hy and that exhibits the largest positive values for

hm,y. Interestingly, hm,y is non-zero for an onion state

because it provides a measure of the magnitude of the

helicity of the two domains inherent to onion states (these

two domains have semicircular magnetizations of opposite

helicity [32]); state (b) which is a vortex state characterized

by a vanishing hm,y; state (c) that is another onion state that

differs from state (a) by the sign of its hm,y; and state (d)

that is a vortex state that differs from state (b) by adopting

an opposite chirality. Simulations of Ref. [4] further found

that the pure onion states (a) or (c) ‘‘deform’’ themselves

under the influence of the homogeneous-in-space magnetic

field before transforming into the pure vortex states (b) or

(d). This deformation mostly consist in pushing the wall

between the two kinds of magnetized domains forming the

onion state toward the thinner part of the asymmetric ring

(i.e., toward the left side of the inner circle), as consistent

with Refs. [14, 33]. This deformation leads to a decrease of

the magnitude of hm,y, as indicated by Fig. 2.

It is also important to realize that hm is not the only

order parameter of an onion state since such latter state also

possesses a non-zero magnetization [4], as it can be gues-

sed from some insets of Fig. 2 (note that, on the other hand,

the vortex state has a single order parameter, that is the

toroidal moment). Such feature has led the authors of Ref.

[4] to look for another complex magnetic state for which

the sole order parameter is the magnetic hypertoroidal

moment, and to wonder how such sole order parameter can

be controlled. As we will see below, the double magnetic

vortex structure is one structure for which the magnetic

hypertoroidal moment is the single order parameter and

such moment can be controlled by applying an homoge-

neous-in-space magnetic field in hysterons made of

ferromagnets.

Magnetic hysterons

Prosandeev and Bellaiche [5] studied the ferromagnetic

systems schematized in Fig. 3a. They consist of two iden-

tical disks of radius R merged together, with w and L rep-

resenting the thickness of the system and half of the distance

between the centers of the two disks, respectively (L and w

L

r

S

h

Fig. 1 Schematization of the asymmetrical ring
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(d)

Fig. 2 Predicted hysteresis loop of the magnetic hypertoroidal

moment in an asymmetric ferromagnetic ring at 100 K, as a function

of the applied ac magnetic field. The insets show the dipolar

configurations corresponding to four important states involved in this

loop. The thick arrows show the direction of the loop

w

L

R

R

x

yz

(a) (b)

(c) (d)

Fig. 3 The geometry of hysterons (a) and three different dipole

patterns (b–d) corresponding to different sizes of magnetic hyste-

rons—b small size, c intermediate size, and d larger size
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define the y- and z-axis, respectively). Such low-dimen-

sional structures are called hysterons [34, 35] and have

been fabricated in Ref. [34]. To study them, the hybrid

approach described in subsection Methods: Ferromagnets

was applied again to hysterons made of Permalloy 80.

Figure 3b–d displays the predicted different possible

ground-states of an hysteron, depending on the character-

istic sizes. For relatively small sizes and when no magnetic

field is applied, the ground state of the investigated hys-

teron is magnetized along the long-axis (see Fig. 3b).

When increasing the characteristic sizes, the dipole pattern

evolves into the peculiar state that has been discovered in

Refs. [32, 33], and that exhibits a dipole vortex in only one

of the two disks while the other disk still possesses a

magnetized configuration (see Fig. 3c). Finally, when fur-

ther increasing sizes, the double vortex state appears, as

displayed in Fig. 3d, when R ^ 1349 nm, L ^ 1178 nm,

and w ^ 333 nm. Such double vortex state has been

observed in ferromagnetic hysterons made of permalloys

[34] and in other low-dimensional magnets [14, 36, 37].

Interestingly, it was numerically found that the sole order

parameter of these double vortex structures is the hyper-

toroidal moment, since such structures do not possess any

magnetization or any magnetic toroidal moment (because

the two vortices have opposite chiralities) [4, 5].

Prosandeev and Bellaiche [5] further investigated the

response of a double vortex to an ac magnetic field

applied along the (short) x-axis. Figure 4 shows the (sole)

x-Cartesian components of the magnetic hypertoroidal

moment, hm,x, as a function of Hx/Hm, at a temperature

of ^100 K for the system adopting the ground-state of

Fig. 3d. l0Hx is the Cartesian component of the magnetic

field, which sinusoidally varies in time between -l0Hm

and ?l0 Hm (with l0Hm = 40 mT while the field fre-

quency is 0.15 MHz, which is below the resonant fre-

quencies to be in the quasi-adiabatic regime. Such resonant

frequencies are around 10 GHz in mesoscale ferromagnets

[38]). Figure 5 provides snapshots of ten important states

occurring during these loops. State (1) happens when

Hx = 0, and is the double vortex state of Fig. 3d. It is

therefore associated with a strongly negative hm,x (because

the vortex centered on the right disk is rotating counter-

clockwise while the vortex centered on the left disk is

rotating clockwise). When l0Hx slightly increases, the

centers of the two vortices move toward each other along

the y-axis to create a magnetization along the x-axis and to

reduce the magnitude of hm,x through the enlargement of

the ‘‘up’’ domains located at the extreme two sides of the

hysteron. When these two centers become separated by a

critical distance of about 2 (R-L), they further move along

different directions: one center now moves toward the

V-shaped junction of the two disks, whereas the other

vortex center moves toward the K-shaped junction, to

prevent the system from possessing too many dipoles

having opposite directions within a small distance. Such

configuration forms State (2), and was named the ‘‘tilde’’

state in Ref. [5] because of the resemblance between the

-1 0 1

-3

-2

-1

0

1

2

3

h m
,x
 (

10
3 µ B

/n
m

)

H
x
/H

m

(1)
(2)

(3)(α)
(4)

(1')

(2')

(3') (α')

(4')

Fig. 4 The dependence of the magnetic hypertoroidal moment in a

magnetic hysteron on the ac magnetic field. The arrows show the

direction of the loop

(1)

(3')

(4) (4')

(2')(2)

(3)

(1')

(α) (α')

Fig. 5 The important states involved in the hysteresis loop shown in

Fig. 4
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shape formed by some lines of dipoles and the tilde char-

acter. When further increasing l0Hx, vortices abruptly

disappear in favor of State (a), that can be classified as a

double onion state since each disk exhibits a configuration

that bears resemblance with a (single) onion state [3, 14,

39]. When further increasing l0Hx up to ?l0Hm, State (a)

continuously evolves into State (3), by making all the

dipoles lying closer to the x-axis. This results in a large

positive magnetization along the x-axis and a vanishing

hm,x. Interestingly, decreasing the field after it reaches its

maximum positive value makes State (3) returning to State

(a) and then leads to a new configuration, that is State (4).

Such latter configuration arises from the simultaneous

nucleation of a counterclockwise vortex centered at the

extreme left side of the left disk and of a clockwise vortex

centered at the extreme right side of the right disk. hm,x is

large and positive in State (4) because State (a) acts as a

seeding state for State (4) and because State (a) has a

positive magnetic hypertoroidal moment resulting from its

specific dipole pattern’s curvature. State (4) was named the

v state in Ref. [5]. When further decreasing the magnitude

of the field but still keeping the positive sign for its

x-component, the centers of the two vortices of State (4)

move toward each other along the y-axis, until the double

vortex State (10) forms when the field vanishes. State (10)
differs from State (1) by exhibiting a vortex of opposite

chirality in each of the two disks, as consistent with the

strong positive hypertoroidal moment in State (10). The

evolution of State (10) to States (20), (a0), (30), (a0), (40), and

then back to State (1), when the field first becomes negative

in sign, then reaches its lowest possible negative value, and

finally increases toward zero, is similar to the evolution

from State (1) to State (10), through States (2), (a), (3), and

(4), described above for the positive fields—since State (i0)
is deduced from State (i), for i=1, 2, a, 3, or 4, by a mirror

symmetry about the (y,z) plane passing through the center

of gravity of the hysteron. Figures 4 and 5 thus indicate

that the chirality of each opposite vortex forming the

double vortex state (or, equivalently, the sign of the mag-

netic hypertoroidal moment) can be controlled by applying

an homogenous magnetic field parallel to the x-axis,

through the formation of the tilde, double onion, homo-

geneous, and v states. Interestingly, it was further found in

Ref. [5] that starting from State (1) and first applying a

negative field results in the path (1)–(40)–(a0)–(30)–(a0)–and

then back to State (1), before the hysteresis loops of Fig. 4

occurs again. In other words, one can not go from State (30)
to State (20) under a negative homogeneous field. This is

because the system energetically prefers to exhibit the

double onion State (a0) that is associated with a negative

hm,x as its ground-state, for a negative magnetic field of

large enough magnitude to result in a large negative

magnetization, but not too large to also have a

non-vanishing hypertoroidal moment. The hysteresis loop

of Fig. 4 can thus only occur in a counterclockwise fash-

ion, and the control of the hypertoroidal moment’s sign is

inherently linked to the curvature of the dipoles in States

(a) and (a0).

Electric hypertoroidal moment in zero-dimensional

ferroelectrics

Let us now focus on the reported discovery of the electric

hypertoroidal moment, and its possible control, in zero-

dimensional ferroelectrics [4, 5].

Ferroelectric nanodots

Prosandeev and Bellaiche [5] also studied a stress-free

cubic ferroelectric (PZT) dot of 24 Å lateral size, and

under ideal SC conditions. The inset of Fig. 6 represents

the dipole arrangement in the ground state of such nanodot,

which is a flower state—as consistent with Ref. [26]. Such

flower state is polarized along the z-direction but also

exhibits a significant deviation, with respect to the z-axis,

for the direction of some local electric dipole moments.

Such deviations, and their associated helical pattern, are

typical of flower states. As a result, any flower state in a

ferroelectric material should exhibit a non-zero polariza-

tion, as well as a finite electric hypertoroidal moment (that

should quantify the helicity associated with such devia-

tions)—as numerically confirmed by Fig. 6 that shows the

evolution of the electrical toroidal moment versus tem-

perature in this ferroelectric dot. This figure also shows that

the flower state forms around Tc ^ 1100 K, and indicates
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Fig. 6 The dependence of the electric hypertoroidal moment on

temperature in a PZT dot under SC electric boundary conditions. The

inset shows the dipole pattern in the dot obtained at 10 K
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that the z-component of the electrical toroidal moment

increases when decreasing the temperature below Tc—as a

result of the increase in the magnitude of the local dipole

moments (note that flower states have also been seen in

magnetic nanostructures of relatively small size [40], and

should thus be associated with a magnetic hypertoroidal

moment there).

An elongated 24 Å 9 48Å 9 96 Å stress-free PZT dot

surrounded by vacuum all around it (that is under ideal OC

conditions) has also been investigated in Ref. [5]. The inset

of Fig. 7a shows the resulting dipole pattern in its ground

state. As consistent with Refs. [2, 41], this pattern consists

of a double vortex, for which we already know that the sole

order parameter is the electric hypertoroidal moment (by

analogy with the fact that the sole order parameter of

magnetic double vortices is the magnetic hypertoroidal

moment, see subsection Magnetic hysterons). Figure 7a

shows that the y-component of the electric hypertoroidal

moment, he,y versus temperature, and simultaneously

reports the temperature dependency of the electric hyper-

toroidal susceptibility in that elongated PZT dot. On can

see that (a) he,y is zero above a critical temperature

Tcrit ^ 555 K; (b) he,y increases in magnitude when

decreasing the temperature below Tcrit [the two other

Cartesian components of he are null for any temperature];

and (c) the electric hypertoroidal susceptibility peaks at

Tcrit. Such features indicate that the double vortex forms at

Tcrit with the centers of these two vortices being aligned

along the z-axis (as seen in the inset of Fig. 7a), and that

the dipoles inside these two opposite vortices grow larger

in magnitude as the temperature is reduced below Tcrit.

Figure 7b further displays the temperature dependency

of the diagonal elements of the homogeneous strain in this

PZT elongated dot. One can notice that, below Tcrit, gyy,

and gzz (that are strains in the plane of the vortices, see

inset of Fig. 7a) are larger than gxx (which is the strain

associated with the direction perpendicular to the vortices).

Note also that, below Tcrit, gyy, and gzz slightly differ, which

is consistent with the symmetry of the elongated (along the

z-direction) dot. Interestingly, the inset of Fig. 7b reveals

that the difference gyy-gzz is proportional to the square of

the hypertoroidal moment for any temperature below Tcrit.

Such findings imply that there is a coupling between strain

and hypertoroidal moment. Therefore, any development of

Landau-type phenomologies to treat systems having a finite

hypertoroidal moment should include an energetic term of

the form klabglhahb where klab is a tensor, where

l = 1,2,...6 denotes the use of the Voigt notation for the

strain components and where a and b are Cartesian indices.

Such coupling is analogous to the piezoelectric effect in

polarized systems or to the fact that a strain is induced by a

change in the toroidal moment in, e.g., single vortex

states [42].

Ferroelectric half-cut rings

Let us also briefly consider systems that also exhibit

hypertoroidal moment and that were not considered in

Refs. [4, 5].

More precisely, let us first investigate a ring made of

PZT, under OC electrical and stress-free mechanical

boundary conditions. Practically, this ring is made by

cutting a 48 Å 9 48 Å 9 24 Å hole inside a 96 Å 9

96 Å 9 24 Å dot. The ground state of such ring is the

dipole vortex shown in Fig. 8a. Note that the dipoles in that

state always lie parallel to the surface in order to minimize

the depolarizing field, and that the sole order parameter of

such structure is the electric toroidal moment.
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Let us now cut the ring into two halves and look at its

ground state. As one can notice from Fig. 8b, such ground

state is no longer a single dipole vortex. It is rather broken

into a series of vortices with alternating opposite chirali-

ties, which thus lead to the vanishing of the toroidal

moment in favor of the generation of a finite electric

hypertoroidal moment that is numerically found to lye

along the y-direction indicated in Fig. 8.

Ferroelectric hysterons

In order to determine similarities and/or differences

between properties of magnetic versus ferroelectric sys-

tems, Prosandeev and Bellaiche [5] also investigated fero-

electric hysterons—in addition to the magnetic hysterons

that have been documented in the subsection Magnetic

hysterons. More precisely, the studied ferroelectric hysteron

is made of Pb(Zr0.4Ti0.6)O3 (PZT), and is under OC electric

boundary conditions and stress-free, and its properties were

simulated by the effective Hamiltonian approach described

in subsection Methods: Ferroelectrics. The characteristic

sizes of this hysteron were chosen to be R = 64 Å,

L = 12 Å, and w = 24 Å because such small sizes already

result in a ground state that is a double vortex. An ac electric

field of 10 GHz frequency and with a magnitude of

5 9 108V/m was applied along the (short) x-axis of the

hysteron (see Fig. 3a for the schematization of an hysteron).

It was found that such field is able to control the electric

hypertoroidal moment, as analogous to the fact that a

magnetic field applied along the x-axis of a ferromagnet

hysteron controls the magnetic hypertoroidal moment.

However, one major difference was numerically determined

between the ferroelectric and magnetic cases: as shown in

Fig. 9, the only possible way for the hysteresis loops of the

electric hypertoroidal moment-versus-electric field to occur

is in a clockwise way (while it is in a counterclockwise way

for the ferromagnet hysteron, see subsection Magnetic

hysterons). To understand the reason behind such differ-

ence, Fig. 10 displays the ten important states involved in

the control of the electric hypertoroidal moment. The

intermediate ferroelectric state denoted as State (b0) shown

in Fig. 10 has a negative electric hypertoroidal moment,

whereas the magnetic State (a) depicted in Fig. 5 has a

positive magnetic hypertoroidal moment, which explains

the opposite path of the hysteresis loops between the fer-

roelectric and ferromagnet hysterons. Note also that State

(b0) possesses a small region centered at the junction of the

two disks that exhibit dipoles lying in the opposite direction

with respect to its polarization, and can therefore be denoted

as a ferroelectric bubble state [43]. It is the specific rotation

of the dipoles around this small region that yields the neg-

ative sign of the hypertoroidal moment. The difference in

morphology between such bubble state and the magnetic

State (a) originates from the low cost of short-range inter-

actions with respect to depolarizing effects in ferroelectrics,

unlike in magnets. Note also that one can notice by com-

paring Figs. 5 and 10 that some other differences exist

between magnetic and ferroelectric hysterons under ac

fields. For instance, there is no tilde state in the ferroelectric

system, unlike State (2) of the ferromagnetic hysteron. On

the other hand, the ferroelectric hysteron exhibits a state

that is not seen in the ferromagnetic case. Such state is State

(8) for which the centers of the two opposite vortices lie

close to each other along the y-axis.

(a)

(b)

y
x

Fig. 8 The dipole pattern in a ring (a) and in a half-cut ring (b) both

made of PZT at 10 K
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direction of the loop
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Hypertoroidal moment in two-dimensional dipolar

systems

So far, we focused on hypertoroidal moments in zero-

dimensional dipolar systems. The aim of this section is to

reveal that the hypertoroidal moments can also exist in

dipolar systems with higher dimensions (e.g., wires, films,

and bulks made of ferromagnets or ferroelectrics), but that

the magnitude and even sign of such moments depend on

the (periodic) supercell chosen to represent such latter

systems. Here, in order to demonstrate such points, it is

enough to solely focus on an ultrathin film made of

Pb(Zr0.4Ti0.6)O3, and having {001} Pb–O terminated

surface.

Method for simulating ferroelectric thin films

This PZT thin film is mimicked to be epitaxially grown on

a substrate, to have a thickness of 20 Å and to be

surrounded by vacuum above it—which implies that it is

also under ideal OC electrical boundary condition. It is

mimicked by a 16 9 16 9 5 supercell, that is repeated

periodically along the x- and y-directions (chosen to be

along the pseudo-cubic [100] and [010] pseudo-cubic

directions, respectively) while being finite along the

z-direction (chosen to lye along [001]).

The total energy of this film, under an external electric

field E; is written as:

Etot ¼Ematðfpig; fvig; ĝ; frigÞ
þ Esurfðfpig; fvigÞ �

X
i

E � pi
; ð16Þ

where the only differences with Eq. 15 are: (1) that the

dipole–dipole interactions involved in Emat are the ones

derived in Refs. [25–27] for the film (rather than a zero-

dimensional system) under ideal OC conditions; (2) we

solely deal here with films that are under ideal OC condi-

tions (i.e., the b coefficient of Eq. 15 is null here); and (3)

we also incorporate the effect of an electric field on

properties of thin films, which explains the existence of the

third term of Eq. 16. Moreover, we wish to mimic here thin

films that are epitaxially strained on a substrate with a

compressive misfit strain of 2.65% magnitude, because

such mechanical boundary condition is known to generate

periodic nanostripes in PZT films under OC-like conditions

[44] (and, as we will see below, such nanostripes yield non-

zero electric hypertoroidal moment). For that, we freeze

three components of ĝ (in Voigt notation)—g6 = 0, and

g1 = g2 = -0.0265—while its other three components can

relax.

The total energy of Eq. 16 is used in MC simulations

[30] that typically first run over 4 9 104 MC sweeps to

equilibrate the systems at each temperature. Additional

16 9 104 MC sweeps are then used to obtain averaged

statistical quantities. The investigated systems are cooled

down from high temperatures (in the paraelectric phase) to

10 K, by small steps, which provides us with an accurate

measure of the ground-state configuration.

Temperature evolution of the electric hypertoroidal

moment and of the electric hypertoroidal susceptibility

in a ferroelectric thin film

Figure 11a, b shows the computed electric hypertoroidal

moment and the electric hypertoroidal susceptibility,

respectively, as a function of temperature in the studied

PZT ultrathin film under no applied field. One can notice

that, at high temperature, he has zero values and that its

z-component increases upon cooling, while vzz
(he) increases

approximately in a Curie–Weiss manner when decreasing

the temperature. Interestingly, vzz
(he) exhibits two peaks, that

are associated with two different behaviors of the electric

(5)
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(7)

(8)

(5')

(6')

(7')

(8')

(β) (β')

Fig. 10 The important states involved in the hysteresis loop shown in

Fig. 9
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hypertoroidal moment, when further cooling down the

system. The first peak occurs around 225 K when the

z-component of the electric hypertoroidal moment becomes

non-zero. The second peak happens at around 150 K and is

associated with an abrupt change of he,z. We numerically

found that this first peak corresponds to the appearance of

diffused nanostripes made by the z-components of the

electric dipoles and repeating themselves along the x-axis

(see top inset of Fig. 11a for that configuration), whereas

the second peak is generated by the fact that these nano-

stripes become closed in flux at the top and bottom surfaces

of the film for temperature below 150 K (see bottom inset

of Fig. 11a for that second configuration). Note that these

nanostripes have been experimentally detected [45] and

that they do not exhibit any polarization while they are

numerically found to also possess a non-zero y-component

of the electric toroidal moment (in addition to the z-com-

ponent of the electric hypertoroidal moment). Figure 11

thus reveals that not only hypertoroidal moments can

exist—and act as order parameter—in periodic systems

(i.e., in systems with dimensions higher than zero), but also

that the behavior of such hypertoroidal moment and of its

associated susceptibility can provide information about

microscopic changes.

Evolution of the electric hypertoroidal moment

as a function of an applied field in a ferroelectric

thin film

Let us now check if he can also act as fingerprints for the

unusual evolution from nanostripe domains to monodo-

mains, through the formation of nanobubbles, that has been

recently predicted to occur in compressively strained fer-

roelectric films under OC like conditions and under an

applied dc electric field [43]. For that, Fig. 12 reports the

electric hypertoroidal moment as a function of the Ez

magnitude of an electric field E oriented along the z-axis

for the investigated PZT film at 10 K.
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Interestingly, Fig. 12 reveals that the electric hyperto-

roidal moment adopts four different behaviors depending

on the value of the applied field: at small fields (region 1),

there is a relatively large electric hypertoroidal moment

(along the z-axis), that is nearly independent of Ez. For

larger fields, he,z sharply decreases with Ez until almost

vanishing (region 2). Then, at larger fields, the electric

hypertoroidal moment recovers a large value that is mostly

independent of Ez (region 3), until significantly and sharply

decreasing with Ez (region 4).

The microscopic insights provided by our first-princi-

ples-based scheme reveal that region 1 corresponds to the

domain walls motion of the stripes mentioned in Ref. [43]

and depicted in the top inset of Fig. 12, namely that the

‘‘up’’ domains (i.e., for which the dipoles have a z-com-

ponent aligned along the applied electric field) grow lat-

erally at the cost of the adjacent ‘‘down’’ (antiparallel)

domains—with the overall stripe periodicity remaining

unchanged. In region 2, the domain walls’ motion has

stopped (and the ‘‘down’’ domains have reached their

minimal size) and the dipoles ‘‘simply’’ rearrange them-

selves within the ‘‘up’’ and ‘‘down’’ domains—as also seen

in Ref. [43]. Region 3 is associated with the formation of

the ferroelectric nanobubbles (that are displayed in one

inset of Fig. 12 and which possess dipoles aligned along

the -z-direction) from the pinching of the ‘‘down’’

domains, and with the field evolution of the morphology

and number of these bubbles—as also consistent with Ref.

[43]. Finally, in region 4, these bubbles have vanished in

favor of the homogeneously-like configuration shown in

the bottom inset of Fig. 12, in which all dipoles have a

significant component along the direction of the applied

electric field but with some dipoles still deviating from the

z-direction, which explains the non-zero value of he,z.

Further increasing Ez in region 4 reorients such dipoles

closer to the z-direction, thus leading to a decrease of he,z.

Figure 12 thus further demonstrates that not only the

hypertoroidal moment can characterize complex dipolar

structures in periodic systems (note that a polarization also

develops in the studied film when increasing the magnitude

of the applied field [43]), but also that its behavior can

indicate subtle microscopic changes in these structures.

Multivaluedness of the hypertoroidal moment in thin

films

Let us now numerically determine if and how the value of

the hypertoroidal moment depends on the choice of the

supercell used to mimic a periodic system. For that, we

decided to compute in Fig. 13a he,z of the nanostripe

domains (under no applied field) depicted in the left inset

of Fig. 11—that is the Landau-Lifshitz-type (closed flux)

periodic nanostripe domains [46]—as a function of a shift s

of the 16 9 16 9 5 supercell along the x-axis. s = 0 was

the choice made for the calculations presented above in the

subsections Temperature evolution of the electric hyper-

toroidal moment and of the electric hypertoroidal suscep-

tibility in a ferroelectric thin film and Evolution of the

electric hypertoroidal moment as a function of an applied

field in a ferroelectric thin film. On the other hand, for

s = 2, the origin of the x-axis of the supercell is shifted by

two unit cells with respect to the initial supercell and thus

coincides with a domain wall. Note that the origin of the

x-axis for, e.g., s = 0 and s = 4 coincides with the core

of a up domain and with the core of a down domain,

respectively. Figure 13b shows the evolution of the

y-component of the electric toroidal moment as a function

of the shift s, for the sake of completeness. Figure 13

indicates that the magnitude and even sign of he,z and Te,y

depend on s. In particular, he,z has a positive maximal

(respectively, negative minimal) value for the s’s leading to

an origin of the x-axis coinciding with the core of an up

(respectively, down) domain, while it is the smallest in

magnitude for s = 2, 6, 10, and 14—that are s for which

the origin for the x-axis corresponds to a domain wall. It is
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also interesting to notice that the hypertoroidal moment is

maximal in magnitude when the toroidal moment is the

smallest in magnitude, and vice versa (i.e., the toroidal

moment has a maximum magnitude when the hypertoroidal

moment is the smallest in magnitude). In fact, Fig. 13

shows that both he,z and Te,y adopt a sinusoidal dependence

with s with a period equal to the period of the nanostripe,

and that these two sinusoidal waves have a phase differ-

ence of 90 degrees. One can thus decide to define here he,z

and Te,y through their waves characteristics, that are their

period, magnitude, phase, and average value.

The fact that the toroidal moment and hypertoroidal

moment depend on the choice of the supercell used to

represent a periodic system bears resemblance with the fact

that the electrical polarization [47] or toroidal moment [48]

of a periodic system is not uniquely defined and can exhibit

different values. Interestingly, such analogy is pushed

further when realizing that the difference between polar-

izations (or the difference between toroidal moments) of a

given system is known to be physically meaningful (and

thus do not depend on the choice of supercell) [49, 50]

while we numerically found that the difference between the

hypertoroidal moments when the film is within the region 1

indicated in Fig. 12 (e.g., the difference between the hyp-

ertoroidal moment, computed for a given s, for a film under

an applied field of 109 V/m and the hypertoroidal moment,

computed for the same s, for a film under no field) is also

found to be independent on s.

Conclusion

In summary, we have reviewed the two recent published

studies [4, 5] devoted to the electric and magnetic

hypertoidal moment in zero-dimensional ferroelectrics and

ferromagnets, respectively, through the use of the simula-

tions described in section Methods. We also provided

additional information about these hypertoroidal moments.

In particular, we emphasized that such new multipole

involves a double cross product of the local dipoles with

the vectors locating their positions, and exists for many

complex states, such as the onion, flower, double vortex,

nanostripes, and nanobubbles states. In fact, the hyperto-

roidal moment represents a measure of microscopic fea-

tures associated with all these latter states. We also

indicated and discussed the conjugate fields and suscepti-

bilities associated with these hypertoroidal moments, and

the coupling between these moments and the strain. We

further pointed out various important differences related to

hypertoroidal moment, such as the facts that (i) the mag-

netic hypertoroidal moment is an axial vector while

the electric hypertoroidal moment is a polar vector; (ii)

the hysteresis hypertoroidal moment-versus-applied field

occurs in an opposite fashion in an hysteron made of a

ferroelectric with respect to an hysteron made of a ferro-

magnet; and (iii) the hypertoroidal moment can have dif-

ferent possible values in a periodic system while it is

uniquely defined in a zero-dimensional material.

It may also be interesting in the future to determine if

other order parameters need to be defined in order to

characterize states with increasing complexity. For

instance, one may wonder if there are dipolar structures for

which the sole order parameter involves a triple cross

product of the local dipoles with the vectors locating their

positions.
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